20 research outputs found

    An Active Pattern Infrastructure for Domain-Specific Languages

    Get PDF
    Tool support for design patterns is a critically important area of computer-aided software engineering. With the proliferation of Domain-Specific Modeling Languages (DSMLs), the adaptation of the notion of design patterns appears to be a promising direction of research. This paper introduces a new approach to DSML patterns, namely, the Active Model Pattern infrastructure. In this framework, not only the traditional insertion of predefined partial models is supported, but interactive, localized design-time manipulation of models. Optionally, the infrastructure can be adapted to handling transactional tracing information as well as transactional undo and redo operations. Possible realizations of the framework are also discussed and compare

    An Incremental OCL Compiler for Modeling Environments

    Get PDF
    In software engineering, reliability and development time are two of the most important aspects, therefore, modeling environments, which aide both, are widely used during software development. UML and OCL became industry standards, and are supported by many CASE tools. OCL code checking, which has to be performed by these tools, has a specialty, as not all of the information necessary for compilation is available from the code, the related model contains the types, navigations and attributes. The build time of OCL code fragments is increased if the development tool supports distributed modeling, because in this case, model element checking has to be performed in a model repository that cannot be held in memory. In this paper, we introduce a method that enables incremental OCL code building and therefore reduces the development time. Incremental builds require higher complexity than simple builds, thus balancing between the two methods is also considered

    Design Pattern Modeling with Constraint Relaxation

    Get PDF
    Metamodeling is a widely applied technique in the field of graphical language engineering. Environments supporting metamodeling aid rapid and flexible domain-specific modeling language (DSML) definition and utilization. In software engineering, design patterns are efficient solutions for recurring problems. With the proliferation of DSMLs, there is a need for domain-specific design patterns to offer solutions to problems recurring in different domains. The aim of this paper is to illustrate a concept that integrates modeling patterns into a metamodeling environment. The introduced approach utilizes the modeling functionalities of the environment; a visual design pattern metamodel, a system architectural metamodel extended with textual constraints are introduced. Furthermore, design patterns are validated against relaxed constraints defined in the metamodel to only allow the creation of patterns that can be extended to valid instance models

    Model transformation by graph transformation: A comparative study

    Full text link
    This is an electronic version of the paper presented at the Model Transformation in Practice, held in Montego Bay on 2005Graph transformation has been widely used for expressing model transformations. Especially transformations of visual models can be naturally formulated by graph transformations, since graphs are well suited to describe the underlying structures of models. Based on a common sample model transformation, four different model transformation approaches are presented which all perform graph transformations. At first, a basic solution is presented and crucial points of model transformations are indicated. Subsequent solutions focus mainly on the indicated problems. Finally, a first comparison of the chosen approaches to model transformation is presented where the main ingredients of each approach are summarized

    Model Evolution and Management

    No full text
    As complex software and systems development projects need models as an important planning, structuring and development technique, models now face issues resolved for software earlier: models need to be versioned, differences captured, syntactic and semantic correctness checked as early as possible, documented, presented in easily accessible forms, etc. Quality management needs to be established for models as well as their relationship to other models, to code and to requirement documents precisely clarified and tracked. Business and product requirements, product technologies as well as development tools evolve. This also means we need evolutionary technologies both for models within a language and if the language evolves also for an upgrade of the models. This chapter discusses the state of the art in model management and evolution and sketches what is still necessary for models to become as usable and used as software

    Transitioning to the cloud?: a model-driven analysis and automated deployment capability for cloud services

    No full text
    ABSTRACT As cloud computing becomes increasingly popular and appealing, application and service providers increasingly face questions on whether moving to the cloud would be beneficial to their business, and how should the cloud deployment of their application be realized. Analysis techniques, such as simulations, hold promise in analyzing the benefits of moving to the cloud, and while generative mechanisms can automate the deployment of applications in the cloud. This paper describes how model-driven engineering (MDE) supports both these desired capabilities by providing intuitive and automated capabilities for driving simulations of cloud infrastructures and application services to analyze the benefits of moving the applications to the cloud, and automating the deployment of these applications in the cloud

    Model Reuse with Metamodel-Based Transformations

    No full text
    Abstract. Metamodel-based transformations permit descriptions of mappings between models created using different concepts from possibly overlapping domains. This paper describes the basic algorithms used in matching metamodel constructs, and how this match is to be applied. The transformation process facilitates the reuse of models specified in one domain-specific modeling language in another context: another domain-specific modeling language. UML class diagrams are used as the language of the metamodels. The focus of the paper is on the matching and firing of transformation rules, and on finding efficient and generic algorithms. An illustrative case study is provided.
    corecore